
Building Temporal Graphs and Embeddings

February, 2020

Srdjan Marinovic

A Practitioner’s Approach



About me

● Research background in security and non-monotonic systems 

● SignalFrame tech co-founder



SignalFrame

● Indexing public WiFi/Bluetooth infrastructure

● Analyzing temporal changes and relationships 

between spaces and devices
○ Supplementing satellite image analysis

○ 2nd Factor Authentication

○ Market intelligence



SignalGraph

● Signals are nodes in a streaming temporal graph

~ 6 billion nodes

~ 100 billion edges

~ 300 million updated nodes per day

~ 1 billion edge updates per day



SignalGraph (GWU wifi @ 1 week Feb)



SignalGraph (GWU wifi @ 1 week Feb)



SignalGraph (GWU wifi @ 1 week Feb)



Temporal (Streaming) System Model

Infinite event source

n0

n3

n1

n4

n2

+ (n0, n1) @ t8

- (n0, n9) @ t5

Real-time Iterative 

Queries

Q

U

E

R

I

E

S



Temporal (Streaming) Systems

● Network security (Intrusion detection)

● Recommendations

● Item scoring

● Geo-temporal analytics



Practitioner's proposition

Model and analyze temporal graphs via explicit 

temporal nodes and edges. 



Temporal Graph Schema

01



Schema Goals

● Queries (lock-free)* parallelizable over time

● Implement on-top of existing DBs
○ (as adjacency list structure)

● Able to maintain constant hot-storage size



Strawman: Time as a (multi-)edge property

n0 n3

n1

n4

n2

@ t8

@ t1

@ t1



Strawman: Time as a (multi-)edge property

● Density edges/node increases with time

○ Limits the scalability for real-time and batch queries

● Limited concurrent access for reads and writes

● Makes time-constraints hard to implemented



Timed Nodes: Time window part of a node’s id

n4@w1

n4@w2

n4@w10

n4
“shadow” node

tracks different timed 

representations 

Note: suited for vertex-centric (adjacency list) storage



Timed Nodes: Time window part of a node’s id

n4[t1, t4]

n1[t1, t4]

n2[t1, t4]

n3[t1, t4]

@ t2

@ t3

@ t1



Windows need not be the same: 
Geo-temporal analysis

DR5RS

@1h

DR5RE

@1h

9VC3

@1week

9vc9

@1week



January 3-10

February 11-20



Timed Nodes: Open-World Assumption
Are two nodes connected?

n4@w1

n1@w1

w = 0.8

n4@w2

n1@w2

w = ? 



Timed Nodes: Open-World Assumption

● (windowed) Closed-World

○ Set w = 0 if edge does not exist in past N

windows

● Create snapshots of aggregated past windows

○ Propagate aggregated edges as a new edge

○ Can be done in a lazy (amortized) fashion



Related Work on Modelling/Processing Temporal Graphs

● Chronos: A Graph Engine for Temporal Graph Analysis 

○ [Han et al 2014]

● GraphOne: A Data Store for Real-time Analytics on Evolving Graphs 

○ [Kumar et al 2019]

● GraphTau: Time-Evolving Graph Processing at Scale 

○ [Iyer et al 2016]

● Kineograph: Taking the Pulse of a Fast-Changing and Connected World

○ [Cheng et al 2012] 

● A Foundation of Lazy Streaming Graphs

○ [Dexter et al 2019]

● KickStarter: Fast and Accurate Computations on Streaming Graphs via Trimmed 

Approximations

○ [Vora et al 2017]



Timed Nodes Schema: Summary

● Nodes sharded across time windows. 

● Length of windows can be learnt from the stream.

● Pro: Can be implemented on top of existing Graph/KV DBs

● Pro: Well suited for concurrent reads/writes

● Pro: Reduces density edges/nodes

● Pro: Easy to drop past data and have a constant in-mem size

● Con: Requires an additional query layer

● Con: Requires dealing with Open-World and snapshots



Temporal Embeddings

02



Embedding Goals

● Expose changes in a node’s behaviour over arbitrary 

time windows.

● Account for different levels of activity across time.

● Deal with infinite node sets.

○ or at least billions of nodes



SignalFrame’s 2nd Factor Authentication

A bubble is a time window of 14 

days, with a 3-day overlap.

A bubble represents all 1-hop 

neighbours of a device that we 

want to authenticate.

Has the behaviour

changed?



(Static) Embeddings

● 𝑓𝑒𝑚𝑏𝑒𝑑 ∶ 𝑁𝑜𝑑𝑒 → 𝑅^𝑑

○ (Ideally, d << number of nodes)

● Two main approaches:

○ Laplacian Eigenvectors

○ Random-walk skip-gram models



Random-walk skip-gram

n0 n3

n1

n4

n2

Multiple walks per node
e.g.

Walk = [n4,n3,n2,n1]
Skip-window-1 = [
(n4,n3)
(n3,n4)
(n3,n2)
(n1,n2)
]



Random-walk skip-gram

n0 n3

n1

n4

n2

Pairs can be fed into an encoder, ala 
word2vec, to produce the embeddings 
(i.e. the net’s inner layer).



Strawman Temporal Embedding

● Train on random walks across all time windows to 

produce one embedding per node.

● Does not model change over time.

● Does not differentiate between different levels of 

activity over time.



Strawman Temporal Embedding

● Apply skip-gram model to each timed node
○ Add regularization to “shadow” (non-temporal) nodes

○ Use strawman-1 embeddings as priors

● Still need to deal with:

○ “infinite” (streaming) graphs?

○ no activity?

○ different levels of activity?



SignalFrame’s Quasi-Embeddings

1. Build random-walks per node per sliding windows

2. Aggregate random-walks from connected components into a 

sparse vector

○ NLP/IR: Each vector is a document with nodes as 

dimensions.

3. Collect all sparse vectors per connected components per sliding 

windows



SignalFrame’s Quasi-Embeddings

n0 n3

n1 n2

@ t8,9

@ t1,t11,t15

@ t1

n4

[t0, t_n]

[t0+step, t_n+step]

[t0+2*step, t_n+2*step]

Build embeddings for [t0, t_m] with some step.

Step and size hyper-params can result in

“tighter” embeddings.

n7

n9

@ t8,t20



SignalFrame’s Quasi-Embeddings

n0 n3

n1 n2

W=2

W=3

W=1

n7

n9

W=2Generate weighted random walks per 

connected component.

Starting at the hidden node.

(n0, n3, n1)

(n0, n3, n2)

…

(n7, n9)

(n7, n9)

…

∑ “document” vector

∑ “document” vector

[t0+2*step, t_n+2*step]



SignalFrame’s 2nd Factor Authentication

A bubble is a time window of 14 

days, with a 3-day overlap.

A bubble represents all 1-hop 

neighbours of a device that we 

want to authenticate.

Has the behaviour

changed?



SignalFrame’s 2nd Factor Authentication

Embedding is a “signal” document.

All other signals are noise.



SignalFrame’s 2nd Factor Authentication

Reduction to temporal 

embeddings.

Has the behaviour

changed?



Similarity between sets of temporal embeddings 

● Still need to address:
○ Different amount of evidence for the activity during a time 

window

○ Different set sizes, i.e. presence and absence of activity 



3 devices; 2 temporal 

communities per device

Embeddings per device (derived from 

sliding over temporal communities) 



Embeddings per device (derived from 

sliding over temporal communities) 

3 devices; 2 temporal 

communities per device



Similarity between sets of temporal embeddings 

● 𝑓 ∶ 2𝐸𝑚𝑏𝑒𝑑𝑑𝑖𝑛𝑔, 2𝐸𝑚𝑏𝑒𝑑𝑑𝑖𝑛𝑔, 𝑤𝑒𝑖𝑔ℎ𝑡𝑠 → 𝑅

● Input: 
○ M(n,m) – pairwise cosine between sets A, B

○ weights_a – weights associated to members of A

○ weights_b – weights associated to members of B



1. W, where w(i,j) = min(weights_a(i), weights_b(j))

2. S = M o W // Hadamard product

3. score = max(∑i
n max(S(i,.)), ∑j

m max(S(.,j)))

4. decay = max(0norm(Maxi
n M(i,.)), 0norm(Maxj

m M(.,j)))

1. 0norm(vector) := (len_non_zero(vector) + 1)/(len(vector) +1)

5. return score * decay

Sketch



Related Work on Graph Embeddings

● Laplacian Eigenmaps and Spectral Techniques for Embedding and Clustering

○ [Belkin et al 2000]

● DeepWalk: Online Learning of Social Representations 

○ [Perozzi et al 2014]

● node2vec: Scalable Feature Learning for Networks

○ [Grover et al 2016]

● struc2vec: LearningNodeRepresentationsfromStructural Identity

○ [Ribeiro et al 2017]

● Is a Single Embedding Enough? Learning Node Representations that Capture Multiple 

Social Contexts

○ [Epasto et al 2019]



Temporal (Quasi-)Embeddings Summary

● Pro: Can be done in pseudo real-time for some use-cases

● Pro: Explicit similarity model for sets of embeddings

● Pro: Process new nodes in a streaming mode

● Con: Hyper-params selection is not straight-forward

○ Sliding windows, Walk lengths, Keep all embeddings?

● Con: Dimensions are not reduced

● Con: No explicit cost function



Future Work

● Reduce dimensions for infinite streams, and keep them 

semantically equivalent 

○ Structural embeddings (ala struct2vec) with quasi-

embeddings as “syntactic” (collect-neighbours) 

embeddings

○ How/if Graph NNs can be used for structural analysis



Thanks.
(slides at https://a-little-srdjan.github.io)


