

Building Temporal Graphs and Embeddings A Practitioner's Approach

Srdjan Marinovic

February, 2020

About me

- Research background in security and non-monotonic systems
- SignalFrame tech co-founder

SignalFrame

• Indexing public WiFi/Bluetooth infrastructure

- Analyzing temporal changes and relationships between spaces and devices
 - Supplementing satellite image analysis
 - ^o 2nd Factor Authentication
 - Market intelligence

SignalGraph

- Signals are nodes in a streaming temporal graph
 - ~ 6 billion nodes
 - ~ 100 billion edges
 - ~ 300 million updated nodes per day
 - ~ 1 billion edge updates per day

SignalGraph (GWU wifi @ 1 week Feb)

SignalGraph (GWU wifi @ 1 week Feb)

SignalGraph (GWU wifi @ 1 week Feb)

Temporal (Streaming) System Model

Temporal (Streaming) Systems

- Network security (Intrusion detection)
- Recommendations
- Item scoring
- Geo-temporal analytics

Practitioner's proposition

Model and analyze temporal graphs via explicit temporal nodes and edges.

Temporal Graph Schema

 \sim

Schema Goals

- Queries (lock-free)* parallelizable over time
- Implement on-top of existing DBs
 - (as adjacency list structure)
- Able to maintain constant hot-storage size

Strawman: Time as a (multi-)edge property

Strawman: Time as a (multi-)edge property

- Density edges/node increases with time
 - Limits the scalability for real-time and batch queries

- Limited concurrent access for reads and writes
- Makes time-constraints hard to implemented

Timed Nodes: Time window part of a node's id

Note: suited for vertex-centric (adjacency list) storage

Timed Nodes: Time window part of a node's id

Windows need not be the same: Geo-temporal analysis

Timed Nodes: Open-World Assumption

Are two nodes connected?

Timed Nodes: Open-World Assumption

- (windowed) Closed-World
 - Set w = 0 if edge does not exist in past N windows

Create snapshots of aggregated past windows
Propagate aggregated edges as a new edge
Can be done in a lazy (amortized) fashion

Related Work on Modelling/Processing Temporal Graphs

- Chronos: A Graph Engine for Temporal Graph Analysis
 - [Han et al 2014]
- GraphOne: A Data Store for Real-time Analytics on Evolving Graphs
 - [Kumar et al 2019]
- GraphTau: Time-Evolving Graph Processing at Scale
 - [lyer et al 2016]
- Kineograph: Taking the Pulse of a Fast-Changing and Connected World
 - [Cheng et al 2012]
- A Foundation of Lazy Streaming Graphs
 - [Dexter et al 2019]
- KickStarter: Fast and Accurate Computations on Streaming Graphs via Trimmed Approximations
 - [Vora et al 2017]

Timed Nodes Schema: Summary

- Nodes sharded across time windows.
- Length of windows can be learnt from the stream.
- Pro: Can be implemented on top of existing Graph/KV DBs
- Pro: Well suited for concurrent reads/writes
- Pro: Reduces density edges/nodes
- Pro: Easy to drop past data and have a constant in-mem size
- Con: Requires an additional query layer
- Con: Requires dealing with Open-World and snapshots

Temporal Embeddings

Embedding Goals

• Expose changes in a node's behaviour over arbitrary time windows.

• Account for different levels of activity across time.

- Deal with infinite node sets.
 - or at least billions of nodes

A bubble is a time window of 14 days, with a 3-day overlap.

A bubble represents all 1-hop neighbours of a device that we want to authenticate.

Has the behaviour changed?

(Static) Embeddings

- . f_{embed} : Node $\rightarrow R^{d}$
 - Ideally, d << number of nodes)

- Two main approaches:
 - Laplacian Eigenvectors
 - Random-walk skip-gram models

Random-walk skip-gram

Multiple walks per node e.g. Walk = [n4, n3, n2, n1]Skip-window-1 = [(n4,n3) (n3,n4) (n3,n2) (n1,n2)

Random-walk skip-gram

Pairs can be fed into an encoder, ala **word2vec**, to produce the embeddings (i.e. the net's inner layer).

Strawman Temporal Embedding

• Train on random walks across all time windows to produce one embedding per node.

- Does not model change over time.
- Does not differentiate between different levels of activity over time.

Strawman Temporal Embedding

- Apply skip-gram model to each timed node
 - Add regularization to "shadow" (non-temporal) nodes
 - Use strawman-1 embeddings as priors
- Still need to deal with:
 - "infinite" (streaming) graphs?
 - o no activity?
 - o different levels of activity?

SignalFrame's Quasi-Embeddings

- 1. Build random-walks per node per sliding windows
- Aggregate random-walks from connected components into a sparse vector
 - NLP/IR: Each vector is a document with nodes as dimensions.
- 3. Collect all sparse vectors per connected components per sliding windows

A bubble is a time window of 14 days, with a 3-day overlap.

A bubble represents all 1-hop neighbours of a device that we want to authenticate.

Has the behaviour changed?

Embedding is a "signal" document.

All other signals are noise.

Reduction to temporal embeddings.

Has the behaviour changed?

Similarity between sets of temporal embeddings

- Still need to address:
 - Different amount of evidence for the activity during a time window
 - Different set sizes, i.e. presence and absence of activity

3 devices; 2 temporal communities per device

Embeddings per device (derived from sliding over temporal communities)

3 devices; 2 temporal communities per device

Embeddings per device (derived from sliding over temporal communities)

Similarity between sets of temporal embeddings

- $f: 2^{Embedding}, 2^{Embedding}, weights \rightarrow R$
- Input:
 - M(n,m) pairwise cosine between sets A, B
 - weights_a weights associated to members of A
 - weights_b weights associated to members of B

Sketch

- W, where w(i,j) = **min**(weights_a(i), weights_b(j))
- $_{2.}$ S = M ° W // Hadamard product
- score = $max(\sum_{i}^{n} max(S(i,.)), \sum_{j}^{m} max(S(.,j)))$
- 4. $decay = max(Onorm(Max_i^n M(i,.)), Onorm(Max_j^m M(.,j)))$
 - 1. Onorm(vector) := (len_non_zero(vector) + 1)/(len(vector) + 1)
- 5. **return** score * decay

Related Work on Graph Embeddings

- Laplacian Eigenmaps and Spectral Techniques for Embedding and Clustering
 - [Belkin et al 2000]
- DeepWalk: Online Learning of Social Representations
 - [Perozzi et al 2014]
- node2vec: Scalable Feature Learning for Networks
 - [Grover et al 2016]
- struc2vec: LearningNodeRepresentationsfromStructural Identity
 - [Ribeiro et al 2017]
- Is a Single Embedding Enough? Learning Node Representations that Capture Multiple Social Contexts
 - [Epasto et al 2019]

Temporal (Quasi-)Embeddings Summary

- Pro: Can be done in pseudo real-time for some use-cases
- Pro: Explicit similarity model for sets of embeddings
- Pro: Process new nodes in a streaming mode
- Con: Hyper-params selection is not straight-forward
 - Sliding windows, Walk lengths, Keep all embeddings?
- Con: Dimensions are not reduced
- Con: No explicit cost function

Future Work

- Reduce dimensions for infinite streams, and keep them semantically equivalent
 - Structural embeddings (ala struct2vec) with quasiembeddings as "syntactic" (collect-neighbours) embeddings
 - How/if Graph NNs can be used for structural analysis

Thanks.

(slides at https://a-little-srdjan.github.io)